Drosophila melanogaster

not annotated - annotated - LINNAEUS only

20854479

PsOr1, a potential target for RNA interference-based pest management.

Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction.

20854481

Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster.

Wolbachia are inherited intracellular bacteria that infect a broad range of invertebrate hosts. They commonly manipulate host reproduction in a variety of ways and thereby favour their invasion into host populations. While the biology of Wolbachia has been extensively studied at the ecological and phenotypic level, little is known about the molecular mechanisms underlying the interaction between Wolbachia and their hosts. Recent comparative genomics studies of Wolbachia strains have revealed putative candidate genes involved in the expression of cytoplasmic incompatibility (CI) in insects. However the functional testing of these genes is hindered by the lack of available genetic tools in Wolbachia. To circumvent this problem we generated transgenic Drosophila lines expressing various Wolbachia CI candidate genes under the control of the GAL4/UAS system in order to evaluate their possible role in Wolbachia-related phenotypes in Drosophila. The expression of a number of these genes in Drosophila melanogaster failed to mimic or alter CI phenotypes across a range of Wolbachia backgrounds or in the absence of Wolbachia.

21029232

Hormone receptor-like in 96 and Broad-Complex modulate phenobarbital induced transcription of cytochrome P450 CYP6D1 in Drosophila S2 cells.

Phenobarbital (PB) is a prototypical inducer for studies of xenobiotic responses in animals. In mammals, the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) have been identified as key transcription factors regulating PB induced transcription of xenobiotic responsive genes. In insects, much less is known about the transcription factors involved in regulating PB induced transcription, although CAR and PXR have a single orthologue hormone receptor-like in 96 (HR96) in Drosophila melanogaster. Using dual luciferase reporter assays in Drosophila Schneider (S2) cells, constructs containing variable lengths of the promoter of the PB inducible cytochrome P450 CYP6D1 were evaluated in the presence and absence of PB. The promoter region between -330 and -280 (relative to the position of transcription start site, +1) was found to be critical for PB induction. Putative binding sites for Drosophila Broad-Complex (BR-C) and deformed (Dfd) were identified within this promoter region using TFsearch. RNA interference (RNAi) treatment of S2 cells in conjunction with CYP6D1 promoter assays showed that suppression of Drosophila HR96 and BR-C transcription in S2 cells resulted in a significant decrease and increase, respectively, of PB induction. Effects of HR96 and BR-C in mediating PB induction were PB specific and PB dependent. This represents new functional evidence that Drosophila HR96 and BR-C can act as an activator and repressor, respectively, in regulating PB induced transcription in insects.

21091811

Candidate chemosensory ionotropic receptors in a Lepidoptera.

A new family of candidate chemosensory ionotropic receptors (IRs) related to ionotropic glutamate receptors (iGluRs) was recently discovered in Drosophila melanogaster. Through Blast analyses of an expressed sequenced tag library prepared from male antennae of the noctuid moth Spodoptera littoralis, we identified 12 unigenes encoding proteins related to D. melanogaster and Bombyx mori IRs. Their full length sequences were obtained and the analyses of their expression patterns suggest that they were exclusively expressed or clearly enriched in chemosensory organs. The deduced protein sequences were more similar to B. mori and D. melanogaster IRs than to iGluRs and showed considerable variations in the predicted ligand-binding domains; none have the three glutamate-interacting residues found in iGluRs, suggesting different binding specificities. Our data suggest that we identified members of the insect IR chemosensory receptor family in S. littoralis and we report here the first demonstration of IR expression in Lepidoptera.

21118326

Molecular structure of the prothoracicotropic hormone gene in the northern house mosquito, Culex pipiens, and its expression analysis in association with diapause and blood feeding.

We cloned the gene that encodes prothoracicotropic hormone (PTTH) in the northern house mosquito, Culex pipiens, and investigated its expression profile in short-day (diapause-destined) and long-day (nondiapause-destined) individuals from the fourth-instar larval stage to 2 months of adulthood, as well as after a blood meal. The deduced C. pipiens PTTH (Cupip-PTTH) amino acid sequence contains seven cysteines with a specific spacing pattern. Sequence alignment suggests that Cupip-PTTH is 23% identical to Drosophila melanogaster PTTH, but is >=59% identical to the PTTHs of other mosquitoes. Cupip-PTTH has structural characteristics similar to those of Bombyx mori PTTH and some vertebrate nerve growth factors with cysteine-knot motifs. PTTH transcripts exhibit a daily cycling profile during the final (fourth) larval instar, with peak abundance occurring late in the scotophase. The fourth-larval instar stage is one day longer in short-day larvae than in long-day larvae, resulting in larger larvae and adults. This additional day of larval development is associated with one extra PTTH cycle. No cycling was observed in pupae, but PTTH transcripts were slightly higher in short-day pupae than in long-day pupae throughout much of the pupal stage. PTTH expression persisted at a nearly constant level in diapausing adult females for the first month but then dropped by -50%, while expression decreased at the beginning of adulthood in nondiapausing females and then remained at a low level as long as the females were denied a blood meal. However, when nondiapausing females were offered a blood meal, PTTH transcripts rose approximately 7 fold in 2 h and remained elevated for 24 h. A few diapausing females (-10%) will take a blood meal when placed in close proximity to a host, but much of the blood is ejected and such meals do not result in mature eggs. Yet, elevated PTTH mRNA expression was also observed in diapausing females that were force fed. Our results thus point to several distinctions in PTTH expression between short-day and long-day mosquitoes, but both types of females responded to a blood meal by elevating levels of PTTH mRNA.

21166911

Conserved function of the Kruppel gap gene in the blowfly Lucilia sericata, despite anterior shift of expression.

To determine whether expression patterns of segmentation genes found in Drosophila melanogaster can be scaled to pattern larger insects, we studied the expression of the Kruppel (Kr) gene in the blowfly Lucilia sericata. Compared with Drosophila Kr, L. sericata Kr showed an unexpected 10% shift of expression towards the anterior pole. Furthermore, expression domains not found in D. melanogaster were present at the blastoderm stage of L. sericata. To compare Kr activity and function, we employed RNA interference-mediated gene silencing. We found Kr phenotypes in L. sericata comparable with those observed in D. melanogaster, demonstrating that L. sericata Kr functions as a gap gene as it does in Drosophila. Our results show that, despite an anterior shift in expression, Kr function has remained conserved during the evolution of the blowflies.

21585578

Influence of helix 12 of Ultraspiracle on Drosophila melanogaster ecdysone receptor function.

Although it has no ligand, helix 12 in the ligand binding domain of Ultraspiracle (USP) is locked in an antagonistic position. To investigate whether this position is of functional importance, we enhanced the flexibility of helix 12 by mutating two amino acids (259, located in L1-3 and F491 in helix 12). Mutated USP reduces the stability of USP and all isoforms of the ecdysone receptor (EcR) and impairs nuclear localization and DNA binding of EcR/USP(L259A/F491/A), resulting in lower levels of basal transcriptional activity. Although the affinity of the ligand ponasterone A to EcR/USP(L259/F491) is moderately diminished, hormone-induced stimulation of transcriptional activity is normal. Potentiation of the ecdysone response by juvenile hormone (JH) is selectively increased in mutated heterodimers with EcR-B1, demonstrating that the antagonistic position impairs functional interaction of the EcR complex with JHIII.